Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this letter, we introduce the idea of AquaFuse, a physics-based method for synthesizing waterbody properties in underwater imagery. We formulate a closed-form solution for waterbody fusion that facilitates realistic data augmentation and geometrically consistent underwater scene rendering. AquaFuse leverages the physical characteristics of light propagation underwater to synthesize the waterbody from one scene to the object contents of another. Unlike data-driven style transfer methods, AquaFuse preserves the depth consistency and object geometry in an input scene. We validate this unique feature by comprehensive experiments over diverse sets of underwater scenes. We find that the AquaFused images preserve over 94% depth consistency and 90–95% structural similarity of the input scenes. We also demonstrate that it generates accurate 3D view synthesis by preserving object geometry while adapting to the inherent waterbody fusion process. AquaFuse opens up a new research direction in data augmentation by geometry-preserving style transfer for underwater imaging and robot vision.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Underwater ROVs (Remotely Operated Vehicles) are unmanned submersibles designed for exploring and operating in the depths of the ocean. Despite using high-end cameras, typical teleoperation engines based on first-person (egocentric) views limit a surface operator’s ability to maneuver the ROV in complex deep-water missions. In this paper, we present an interactive teleoperation interface that enhances the operational capabilities via increased situational awareness. This is accomplished by (i) offering on-demand third-person (exocentric) visuals from past egocentric views, and (ii) facilitating enhanced peripheral information with augmented ROV pose in real-time. We achieve this by integrating a 3D geometry-based Ego-to-Exo view synthesis algorithm into a monocular SLAM system for accurate trajectory estimation. The proposed closed-form solution only uses past egocentric views from the ROV and a SLAM backbone for pose estimation, which makes it portable to existing ROV platforms. Unlike data-driven solutions, it is invariant to applications and waterbody-specific scenes. We validate the geometric accuracy of the proposed framework through extensive experiments of 2-DOF indoor navigation and 6-DOF underwater cave exploration in challenging low-light conditions. A subjective evaluation on 15 human teleoperators further confirms the effectiveness of the integrated features for improved teleoperation. We demonstrate the benefits of dynamic Ego-to-Exo view generation and real-time pose rendering for remote ROV teleoperation by following navigation guides such as cavelines inside underwater caves. This new way of interactive ROV teleoperation opens up promising opportunities for future research in subsea telerobotics.more » « less
-
This paper addresses the challenge of deploying machine learning (ML)-based segmentation models on edge platforms to facilitate real-time scene segmentation for Autonomous Underwater Vehicles (AUVs) in underwater cave exploration and mapping scenarios. We focus on three ML models-U-Net, CaveSeg, and YOLOv8n-deployed on four edge platforms: Raspberry Pi-4, Intel Neural Compute Stick 2 (NCS2), Google Edge TPU, and NVIDIA Jetson Nano. Experimental results reveal that mobile models with modern architectures, such as YOLOv8n, and specialized models for semantic segmentation, like U-Net, offer higher accuracy with lower latency. YOLOv8n emerged as the most accurate model, achieving a 72.5 Intersection Over Union (IoU) score. Meanwhile, the U-Net model deployed on the Coral Dev board delivered the highest speed at 79.24 FPS and the lowest energy consumption at 6.23 mJ. The detailed quantitative analyses and comparative results presented in this paper offer critical insights for deploying cave segmentation systems on underwater robots, ensuring safe and reliable AUV navigation during cave exploration and mapping missions.more » « less
-
This paper explores the design and development of a language-based interface for dynamic mission programming of autonomous underwater vehicles (AUVs). The proposed `Word2Wave' (W2W) framework enables interactive programming and parameter configuration of AUVs for remote subsea missions. The W2W framework includes: (i) a set of novel language rules and command structures for efficient language-to-mission mapping; (ii) a GPT-based prompt engineering module for training data generation; (iii) a small language model (SLM)-based sequence-to-sequence learning pipeline for mission command generation from human speech or text; and (iv) a novel user interface for 2D mission map visualization and human-machine interfacing. The proposed learning pipeline adapts an SLM named T5-Small that can learn language-to-mission mapping from processed language data effectively, providing robust and efficient performance. In addition to a benchmark evaluation with state-of-the-art, we conduct a user interaction study to demonstrate the effectiveness of W2W over commercial AUV programming interfaces. Across participants, W2W-based programming required less than 10% time for mission programming compared to traditional interfaces; it is deemed to be a simpler and more natural paradigm for subsea mission programming with a usability score of 76.25. W2W opens up promising future research opportunities on hands-free AUV mission programming for efficient subsea deployments.more » « lessFree, publicly-accessible full text available May 19, 2026
-
Real-time computer vision and remote visual sensing platforms are increasingly used in numerous underwater applications such as shipwreck mapping, subsea inspection, coastal water monitoring, surveillance, coral reef surveying, invasive fish tracking, and more. Recent advancements in robot vision and powerful single-board computers have paved the way for an imminent revolution in the next generation of subsea technologies. In this chapter, we present these exciting emerging applications and discuss relevant open problems and practical considerations. First, we delineate the specific environmental and operational challenges of underwater vision and highlight some prominent scientific and engineering solutions to ensure robust visual perception. We specifically focus on the characteristics of underwater light propagation from the perspective of image formation and photometry. We also discuss the recent developments and trends in underwater imaging literature to facilitate the restoration, enhancement, and filtering of inherently noisy visual data. Subsequently, we demonstrate how these ideas are extended and deployed in the perception pipelines of Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs). In particular, we present several use cases for marine life monitoring and conservation, human-robot cooperative missions for inspecting submarine cables and archaeological sites, subsea structure or cave mapping, aquaculture, and marine ecology. We elaborately discuss how the deep visual learning and on-device AI breakthroughs are transforming the perception, planning, localization, and navigation capabilities of visually-guided underwater robots. Along this line, we also highlight the prospective future research directions and open problems at the intersection of computer vision and underwater robotics domains.more » « less
-
— In this paper, we present CaveSeg - the first visual learning pipeline for semantic segmentation and scene parsing for AUV navigation inside underwater caves. We address the problem of scarce annotated training data by preparing a comprehensive dataset for semantic segmentation of underwater cave scenes. It contains pixel annotations for important navigation markers (e.g. caveline, arrows), obstacles (e.g. ground plain and overhead layers), scuba divers, and open areas for servoing. Through comprehensive benchmark analyses on cave systems in USA, Mexico, and Spain locations, we demonstrate that robust deep visual models can be developed based on CaveSeg for fast semantic scene parsing of underwater cave environments. In particular, we formulate a novel transformer-based model that is computationally light and offers near real-time execution in addition to achieving state-of-the-art performance. Finally, we explore the design choices and implications of semantic segmentation for visual servoing by AUVs inside underwater caves. The proposed model and benchmark dataset open up promising opportunities for future research in autonomous underwater cave exploration and mapping.more » « less
-
Underwater image restoration aims to recover color, contrast, and appearance in underwater scenes, crucial for fields like marine ecology and archaeology. While pixel-domain diffusion methods work for simple scenes, they are computationally heavy and produce artifacts in complex, depth-varying scenes. We present a single-step latent diffusion method, SLURPP (Single-step Latent Underwater Restoration with Pretrained Priors), that overcomes these limitations by combining a novel network architecture with an accurate synthetic data generation pipeline. SLURPP combines pretrained latent diffusion models - which encode strong priors on the geometry and depth of scenes with an explicit scene decomposition, which allows one to model and account for the effects of light attenuation and backscattering. To train SLURPP, we design a physics-based underwater image synthesis pipeline that applies varied and realistic underwater degradation effects to existing terrestrial image datasets. We evaluate our method extensively on both synthetic and real-world benchmarks and demonstrate state-of-the-art performance.more » « less
-
This paper explores the problem of deploying machine learning (ML)-based object detection and segmentation models on edge platforms to enable realtime caveline detection for Autonomous Underwater Vehicles (AUVs) used for under-water cave exploration and mapping. We specifically investigate three ML models, i.e., U-Net, Vision Transformer (ViT), and YOLOv8, deployed on three edge platforms: Raspberry Pi-4, Intel Neural Compute Stick 2 (NCS2), and NVIDIA Jetson Nano. The experimental results unveil clear tradeoffs between model accuracy, processing speed, and energy consumption. The most accurate model has shown to be U-Net with an 85.53 F1-score and 85.38 Intersection Over Union (IoU) value. Meanwhile, the highest inference speed and lowest energy consumption are achieved by the YOLOv8 model deployed on Jetson Nano operating in the high-power and low-power modes, respectively. The comprehensive quantitative analyses and comparative results provided in the paper highlight important nuances that can guide the deployment of caveline detection systems on underwater robots for ensuring safe and reliable AUV navigation during underwater cave exploration and mapping missions.more » « less
-
Underwater caves are challenging environments that are crucial for water resource management, and for our understanding of hydro-geology and history. Mapping underwater caves is a time-consuming, labor-intensive, and hazardous operation. For autonomous cave mapping by underwater robots, the major challenge lies in vision-based estimation in the complete absence of ambient light, which results in constantly moving shadows due to the motion of the camera-light setup. Thus, detecting and following the caveline as navigation guidance is paramount for robots in autonomous cave mapping missions. In this paper, we present a computationally light caveline detection model based on a novel Vision Transformer (ViT)-based learning pipeline. We address the problem of scarce annotated training data by a weakly supervised formulation where the learning is reinforced through a series of noisy predictions from intermediate sub-optimal models. We validate the utility and effectiveness of such weak supervision for caveline detection and tracking in three different cave locations: USA, Mexico, and Spain. Experimental results demonstrate that our proposed model, CL-ViT, balances the robustness-efficiency trade-off, ensuring good generalization performance while offering 10+ FPS on single-board (Jetson TX2) devices.more » « less
An official website of the United States government

Full Text Available